128 research outputs found

    OSCAR: A Collaborative Bandwidth Aggregation System

    Full text link
    The exponential increase in mobile data demand, coupled with growing user expectation to be connected in all places at all times, have introduced novel challenges for researchers to address. Fortunately, the wide spread deployment of various network technologies and the increased adoption of multi-interface enabled devices have enabled researchers to develop solutions for those challenges. Such solutions aim to exploit available interfaces on such devices in both solitary and collaborative forms. These solutions, however, have faced a steep deployment barrier. In this paper, we present OSCAR, a multi-objective, incentive-based, collaborative, and deployable bandwidth aggregation system. We present the OSCAR architecture that does not introduce any intermediate hardware nor require changes to current applications or legacy servers. The OSCAR architecture is designed to automatically estimate the system's context, dynamically schedule various connections and/or packets to different interfaces, be backwards compatible with the current Internet architecture, and provide the user with incentives for collaboration. We also formulate the OSCAR scheduler as a multi-objective, multi-modal scheduler that maximizes system throughput while minimizing energy consumption or financial cost. We evaluate OSCAR via implementation on Linux, as well as via simulation, and compare our results to the current optimal achievable throughput, cost, and energy consumption. Our evaluation shows that, in the throughput maximization mode, we provide up to 150% enhancement in throughput compared to current operating systems, without any changes to legacy servers. Moreover, this performance gain further increases with the availability of connection resume-supporting, or OSCAR-enabled servers, reaching the maximum achievable upper-bound throughput

    Opportunistic Secrecy with a Strict Delay Constraint

    Full text link
    We investigate the delay limited secrecy capacity of the flat fading channel under two different assumptions on the available transmitter channel state information (CSI). The first scenario assumes perfect prior knowledge of both the main and eavesdropper channel gains. Here, upper and lower bounds on the delay limited secrecy capacity are derived, and shown to be tight in the high signal-to-noise ratio (SNR) regime. In the second scenario, only the main channel CSI is assumed to be available at the transmitter where, remarkably, we establish the achievability of a non-zero delay-limited secure rate, for a wide class of channel distributions, with a high probability. In the two cases, our achievability arguments are based on a novel two-stage key-sharing approach that overcomes the secrecy outage phenomenon observed in earlier works.Comment: Submitted to IEEE Transactions on Information Theor

    Assessment of Mental Workload: a Comparison of Machine Learning Methods and Subjective Assessment Techniques

    Get PDF
    Mental workload (MWL) measurement is a complex multidisciplinary research field. In the last 50 years of research endeavour, MWL measurement has mainly produced theory-driven models. Some of the reasons for justifying this trend includes the omnipresent uncertainty about how to define the construct of MWL and the limited use of datadriven research methodologies. This work presents novel research focused on the investigation of the capability of a selection of supervised Machine Learning (ML) classification techniques to produce data-driven computational models of MWL for the prediction of objective performance. These are then compared to two state-of-the-art subjective techniques for the assessment of MWL, namely the NASA Task Load Index and the Workload Profile, through an analysis of their concurrent and convergent validity. Findings show that the data-driven models generally tend to outperform the two baseline selected techniques

    On the Delay Limited Secrecy Capacity of Fading Channels

    Full text link
    In this paper, the delay limited secrecy capacity of the flat fading channel is investigated under two different assumptions on the available transmitter channel state information (CSI). The first scenario assumes perfect prior knowledge of both the main and eavesdropper channel gains. Here, upper and lower bounds on the secure delay limited capacity are derived and shown to be tight in the high signal-to-noise ratio (SNR) regime (for a wide class of channel distributions). In the second scenario, only the main channel CSI is assumed to be available at the transmitter. Remarkably, under this assumption, we establish the achievability of non-zero secure rate (for a wide class of channel distributions) under a strict delay constraint. In the two cases, our achievability arguments are based on a novel two-stage approach that overcomes the secrecy outage phenomenon observed in earlier works.Comment: Proceedings of the 2009 IEEE International Symposium on Information Theory (ISIT 2009), Seoul, Korea, June 28-July 3, 200

    The swinging self : the costs of shifting between self-images in Alzheimer’s disease

    Get PDF
    Background: We investigated the ability of patients with Alzheimer’s disease (AD) to shift between different self-images. Methods: We developed an original task (shifting-self task) in which we invited 28 patients with AD and 30 control participants to generate “who am I” statements that describe 2 alternative self-images (ie, physical-self vs psychological-self). In a control task, participants had to generate 2 blocks of “who am I” statements (ie, physical-self block and psychological-self block). Results: Analyses showed longer completion time in both the shifting-self and control task in patients with AD than in control participants. Completion time on the shifting-self task was longer than that on the control task in patients with AD, suggesting a shifting cost in AD. Conclusion: We propose that one feature of the diminished sense of self in AD is the difficulty of patients to shift between different alternating self-images

    Dynamic Communications Between GABAA Switch, Local Connectivity, and Synapses During Cortical Development: A Computational Study

    Get PDF
    Several factors regulate cortical development, such as changes in local connectivity and the influences of dynamical synapses. In this study, we simulated various factors affecting the regulation of neural network activity during cortical development. Previous studies have shown that during early cortical development, the reversal potential of GABAA shifts from depolarizing to hyperpolarizing. Here we provide the first integrative computational model to simulate the combined effects of these factors in a unified framework (building on our prior work: Khalil et al., 2017a,b). In the current study, we extend our model to monitor firing activity in response to the excitatory action of GABAA. Precisely, we created a Spiking Neural Network model that included certain biophysical parameters for lateral connectivity (distance between adjacent neurons) and nearby local connectivity (complex connections involving those between neuronal groups). We simulated different network scenarios (for immature and mature conditions) based on these biophysical parameters. Then, we implemented two forms of Short-term synaptic plasticity (depression and facilitation). Each form has two distinct kinds according to its synaptic time constant value. Finally, in both sets of networks, we compared firing rate activity responses before and after simulating dynamical synapses. Based on simulation results, we found that the modulation effect of dynamical synapses for evaluating and shaping the firing activity of the neural network is strongly dependent on the physiological state of GABAA. Moreover, the STP mechanism acts differently in every network scenario, mirroring the crucial modulating roles of these critical parameters during cortical development. Clinical implications for pathological alterations of GABAergic signaling in neurological and psychiatric disorders are discussed

    Generation and Analysis of open foam RVEs with sharp edges using Distance fields and Level sets

    Full text link
    A methodology to generate Representative Volume Elements (RVEs) for open-foam cellular materials based on distance and level set functions is explained. The main focus of this work is to properly represent the geometry of the foam struts of the RVEs that are resultants of the solidification phase during manufacturing. The distance functions are defined based on the work of Sonon[1], where an arbitrary shape packing generation algorithm is introduced based on distance functions. Combinations of these functions are used to generate tessellations and extract open-foam structures with variations in the strut morphology according to the foam the RVE is being compared with, for example, the shape of cross-sections of the struts and their variation along the axis of the struts. The generated morphologies have been compared with real foam samples from existing literature to verify statistically the morphological properties like face-to-cell ratio, edge-to-face ratio and strut length distribution among others. The correlation of these properties on the initial conditions like sphere packing fraction, sphere volume distribution and periodicity of the RVEs have also been studied and are found to be in good match. Steep discontinuities in the distance functions derivatives result in the generation of jagged sharp edges, due to the use of discrete level set functions. Thus a modification in this extraction was deemed necessary and a procedure to extract geometries from multiple level set functions to reproduce such sharp edges of the struts has been incorporated in the current work. The individual cells are extracted as inclusion surfaces based on said combination of the distance functions and their modifications. The sharp edges are computed from the intersection of these inclusion surfaces. The resulting geometry can then be meshed using size functions based on curvature and narrowness and a mesh optimization inspired from [2]. The methodology to produce high quality meshes based on [3] will be outlined. The resulting FE models are easily exported for a multi-scale study to understand the effects of a elastic-plastic test by upscaling to assess the practical applications of these models by comparing with experimental data of physical samples

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore